

- Labor market flows
 1. Worker inflow: persons moving into employment from nonemployment, e.g., (registered) unemployed job finders, schoolleavers finding a job, new entrants on the labour market
 2. Worker outflow: persons moving from employment to nonemployment, e.g., fired, laid-off, workers, workers becoming disabled, workers reaching pension age, going back to school and may need unemployment or social assistance benefits
 3. Job creation: new jobs that previously did not exist
- 4. Job destruction: existing jobs that are being annulled
- (Job-to-job mobility of employed people between existing jobs: ignored in this paper)

Adjustment processes for more Efficiency

- Job Reallocation = the sum of job creations and job destructions
- Worker Reallocation = the sum of hirings and seperations
- Churning = Worker Reallocation minus Job Reallocation

Data

- Construction of a dataset on municipality level (N=407) for 2006 2011. Source: Statistics Netherlands,
- Job and worker flows are calculated from firm-level microdata and aggregated to municipality level
- In- and outflow data for unemployment insurance (UI) and sociale assistance (SA) at municipality level
- Vacancies are based on count data from the Dutch employee insurance agency (UWV) → specifically directed to persons on UI and SA at municipality level
 Specific (matching) stocks (low income, minoritie) and
- background (urban density) variables at municipality level

			e necheria	101	2007-201
Variable	Description	Mean (×1000)	Max (× 1000)	Min (× 1)	St. dev (× 1000)
P15-64	Population of working age	27.2	570.8	580	43.7
UI inflow	Unemployment insurance inflow	0.86	25.2	13	1.7
UI outflow	Unemployment insurance outflow	0.85	289.1	13	1.6
SA inflow	Social assistance inflow	0.24	11.2	0	0.7
SA outflow	Social assistance outflow	0.24	10.9	0	0.7
Vacancies		0.1	3.8	0	0.3
Churning		6.6	208.5	34	14.1
Worker reallocation	Worker inflow plus worker outflow (existing firms)	9.4	287.8	46	20.9
Job reallocation	Job creation plus job destruction (existing firms)	2.8	79.6	12	5.9
Low income recipients	Households with an income of at most 120% of the social minimum	5.4	146.6	0	11.1
Minorities	Non-western minorities	3.0	197.4	0	14.3

	Outflow	from UI			$log\left(\frac{F_l}{P_{15}}\right)$	//→ 64,-1),			
t t		Constant	-198.1	-203.4	-193.7	-192.1	-195.1	-192.5	
			(-12.63)	(-12.82)	(12.38)	(-12.36)	(-12.86	(-12.76)	-
Ш.Г	Matching	. (11)	0.346	0.343	0.335	0.336	0.330	0.335	
		$\log \left(\frac{P_{15-64}}{P_{15-64}} \right)_{t-1}$	(9.23)	(9.22)	(9.46)	(9.48)	(15.99)	(16.35)	2111
	i	. (V)	0.033	0.049	0.042	0.036	0.045	0.037	
		$\log \left(\frac{\overline{P_{15-64}}}{\overline{P_{15-64}}} \right)_{t-1}$	(2.69)	(3.32)	(3.02)	(2.98)	(3.23)	(3.04)	
ŀ	Efficiency	((H)		-0.054	-0.025		-0.044		
		$\log\left(\frac{D}{P_{15-64,-1}}\right)_t$		(-1.95)	(-0.84)		(-1.41)		
ł	Specific stocks	(Inciaw)			0.361	0.365	0.384	0.371	
		$log \left(\frac{P_{15-64}}{P_{15-64}} \right)_{t-1}$			(9.43)	(9.59)	(10.20)	(10.15)	
	Í	(Minor)			-0.038	-0.044	-0.052	-0.051	
		$\log \left(\frac{P_{15-64}}{P_{15-64}} \right)_{t-1}$			(-2.95)	(-3.93)	(-3.29)	(-4.45)	
Ī		time trend	0.098	0.100	0.097	0.096	0.098	0.096	1
L			(12.63)	(12.71)	(12.45)	(12.42)	(12.92)	(12.82)	
		Regional dummies	×	×	×	×			
		Urban density (5 categories)"							
		very strong					-0.062		
							(-0.89)		
		strong					0.076		
							(1.70)		
		moderate					0.093	0.058	1
							(2.38)	(2.28)	
		weak					0.024		1
							(0.82)		1
88		Number of observations	2004	2004	2004	2004	2004	2004	100
88 F		R ²	0.25	0.26	0.29	0.29	0.29	0.29	

		100 Mar 100	C LA SARA	Contraction of the local division of the loc			
Outflow	v from UI		$\log\left(\frac{P}{P_{15}}\right)$	$\left(\frac{UI \rightarrow}{-64, -1}\right)_t$		(1)	
8	Constant	-198.1	-203.4	-193.7	-192.1	-195.1	-192.5
		(-12.63)	(-12.82)	(12.38)	(-12.36)	(-12.86	(-12.76)
Matching	log (UI)	0.346	0.343	0.335	0.336	0.330	0.335
	$\left(\frac{P_{15-64}}{P_{15-64}}\right)_{t-1}$	(9.23)	(9.22)	(9.46)	(9.48)	(15.99)	(16.35)
	$\left \frac{V}{V} \right $	0.033	0.049	0.042	0.036	0.045	0.037
	$\log\left(\overline{P_{15-64}}\right)_{t-1}$	(2.69)	(3.32)	(3.02)	(2.98)	(3.23)	(3.04)
Efficiency	(CH)		-0.054	-0.025		-0.044	
/Churning	$\left \log \left(\overline{P_{15-64,-1}} \right)_t \right $		(-1.95)	(-0.84)		(-1.41)	
Specific	(Inclow)			0.361	0.365	0.384	0.371
stocks:	$\left(\frac{10g}{P_{15-64}}\right)_{t-1}$			(9.43)	(9.59)	(10.20)	(10.15)
Low Inc	(Minor)			-0.038	-0.044	-0.052	-0.051
Minor	$\left(\frac{P_{15-64}}{P_{15-64}}\right)_{t-1}$			(-2.95)	(-3.93)	(-3.29)	(-4.45)
	time trend	0.098	0.100	0.097	0.096	0.098	0.096
		(12.63)	(12.71)	(12.45)	(12.42)	(12.92)	(12.82)
Regional	dummies	no	no	no	no	yes	yes

Outflo	w from UI		$\log\left(\frac{F_{UI\rightarrow}}{P_{15-64,-1}}\right)_{t}$ (2)						
2	Constant	-198.1	-203.4	-193.7	-192.1	-195.1	-192.5		
		(-12.63)	(-12.82)	(12.38)	(-12.36)	(-12.86	(-12.76)		
Regional	dummies	no	no	no	no	yes	yes		
	Urban density								
Ref. Cat.	(5 categories)**					-0.062			
Non-	very strong					(-0.89)			
urban			.			0.076			
	strong		.			(1.70)			
			.			0.093	0.058		
	moderate		.			(2.38)	(2.28)		
			.			0.024			
	weak		.			(0.82)			
	Number of	2004	2004	2004	2004	2004	2004		
	observations								
8	R ²	0.25	0.26	0.29	0.29	0.29	0.29		

Outflow	/ from SA		$\log\left(\frac{1}{P}\right)$	$\left(\frac{F_{SA\rightarrow}}{15-64,-1}\right)_{t}$	(1)	
	Constant	-2.320	-3.710	-4.991	-6.111	-3.211	-4.154
		(-0.37)	(-0.59)	(-0.80)	(-1.10)	(-0.52)	(-0.75)
Matching	(UI)	0.975	0.988	1.008	1.006	1.023	1.031
	$\log\left(\overline{P_{15-64}}\right)_{t-1}$	(68.32)	(69.12)	(63.81)	(64.58)	(62.07)	(67.38)
	$l_{log}(V)$	-0.011	-0.001	-0.001		-0.002	
	$\left(\frac{P_{15-64}}{P_{15-64}}\right)_{t-1}$	(-1.52)	(-0.10)	(-0.14)		(-0.32)	
Efficiency	, <i>(CH)</i>		-0.075	-0.020		0.013	
/churning	$\log\left(\frac{\overline{P_{15-64,-1}}}{P_{15-64,-1}}\right)_t$		(-4.22)	(-1.03)		(0.65)	
Specific	(Inclow)			0.062	0.064	0.036	
stocks:	$\log\left(\overline{P_{15-64}}\right)_{t-1}$			(2.47)	(2.60)	(1.45)	
	(Minor)			-0.063	-0.069	-0.027	-0.020
	$\log\left(\overline{P_{15-64}}\right)_{t-1}$			(-6.31)	(-7.75)	(-2.24)	(-1.83)
	time trend	0.001	0.001	0.002	0.003	0.001	0.002
		(0.18)	(0.40)	(0.69)	(0.99)	(0.43)	(0.60)
Regional	dummies	no	no	no	no	yes	yes
						0.000	0.070

Outflow	r from SA		log	$\left(\frac{F_{SA\rightarrow}}{P_{15-64,-1}}\right)$	t	(2)	
	Constant	-2.320	-3.710	-4.991	-6.111	-3.211	-4.154
		(-0.37)	(-0.59)	(-0.80)	(-1.10)	(-0.52)	(-0.75)
Regional	dummies	no	no	no	no	yes	yes
	Urban density						
Ref. Cat.:	(5 categories)**					-0.268	-0.273
Non-	very strong					(-4.73)	(-4.96)
urban						-0.151	-0.159
	strong					(-4.20)	(-4.71)
						-0.176	-0.179
	moderate					(-5.76)	(-6.23)
						-0.101	-0.103
	weak					(-4.52)	(-4.77)
	Number of	1996	1996	1996	1996	1996	1996
	observations						
	R ²	0.86	0.86	0.87	0.87	0.87	0.87

Inflow inf from a jo	to UI ob			log	$\left(\frac{F_{J \rightarrow U}}{P_{15-64}} \right)$	$\left(\frac{l}{-1}\right)_{t}$	(1)		
	Constant	-323.3	-326.1	-312.3	-310.9	-311.9	-312.5	-313.9	-316.2
		(-21.9)	(-22.4)	(-21.3)	(-21.3)	(-21.3)	(-21.4)	(-21.3)	(-21.55)
Matching	$J_{2,2}(J_{1})$	0.025	0.421	0.349	0.352	0.348	0.349	0.389	0.377
	$\left(\frac{P_{15-64}}{P_{15-64}}\right)_{t-1}$	(0.64)	(4.90)	(4.25)	(4.30)	(4.29)	(4.29)	(4.56)	(4.45)
Efficiency	CH		-0.369	-0.309	-0.346	-0.333	-0.331		
Churning	$\left(\frac{P_{15-64,-1}}{P_{15-64,-1}}\right)_t$		(-5.22)	(-4.32)	(-5.10)	(-4.6)	(-4.63)		
Work Rea	(WR)							-0.478	-0.372
	$\log\left(\overline{P_{15-64,-1}}\right)_t$							(-4.39)	(-4.76)
Job Doa	(JR)							0.097	
JUDINEd	$\log\left(\overline{P_{15-64,-1}}\right)_t$							(1.41)	
Specific	(Inclow)			0.482	0.454	0.516	0.503	0.514	0.503
stocks	$\left(\frac{P_{15-64}}{P_{15-64}}\right)_{t-1}$			(9.76)	(9.76)	(10.4)	(10.18)	(10.31)	(10.22)
	(Minor)			-0.030		-0.054	-0.057	-0.052	-0.058
	$\left(\frac{P_{15-64}}{P_{15-64}}\right)_{t-1}$			(-1.61)		(-2.35)	(-2.79)	(-2.27)	(-2.86)
	time trend	0.159	0.160	0.156	0.155	0.155	0.156	0.156	0.158
		(21.89	(22.17	(21.39)	(21 35)	(21 37	(21.41)	(21.43)	(21.61)

Inflow int	Inflow into UI		(Fı→uı	١,	(F _I -	<i>, 10</i>	(2)	
from a jo	ob		$\operatorname{og}\left({P_{1}}\right)$	5-64,-	$\left(\int_{t} \log \left(\int_{t} \right) \right) dt = 0$	(P_{15-6})	$(64,-1)_t$	(2)	
	time trend	0.159	0.160	0.156	0.155	0.155	0.156	0.156	0.158
		(21.89)	(22.2)	(21.4)	(21.35)	(21.4)	(21.41)	(21.43)	(21.61)
Regional	Urban density	no	no	no	no	yes	yes	yes	yes
	(5 category.)**								
Ref. Cat.:	very strong					-0.080		-0.084	
non-urban						(-0.78)		(-0.81)	
	strong					0.135	0.110	0.132	0.105
	-					(2.05)	(2.26)	(2.00)	(2.18)
	moderate					0.158	0.132	0.157	0.130
						(2.74)	(3.17)	(2.72)	(3.14)
	weak					0.057		0.055	
						(1.35)		(1.30)	
	Number of	2015	2015	2015	2015	2015	2015	2015	2015
	DDServations	0.15	0.15	0.22	0.22	0.22	0.22	0.22	0.22
1	K.	0.15	0.15	0.22	0.22	0.23	0.22	0.23	0.23

_			DE PACE	100	1000				5
	Inflow in	nto SA				$F_{\rightarrow SA}$	(2	5	
	from a j	ob or UI		п	$P_{P_{12}}$	5-64,-1) _t		-/	
2010									
	Regional	Urban density	no	no	no	yes	yes	yes	yes
		(5 categories)							
	Ref. cat.:	very strong				0.736	0.694	0.737	0.694
	Non-urban					(4.82)	(5.22)	(4.82)	(5.22)
		strong				0.465	0.440	0.467	0.440
						(4.92)	(6.31)	(4.93)	(6.32)
		moderate				0.100		0.102	
						(1.20)		(1.23)	
		weak				-0.060		-0.059	
						(-0.95)		(-0.94)	
		Number of	2004	2004	2004	2004	2004	2004	2004
		observations							
		R ²	0.13	0.12	0.29	0.37	0.36	0.37	0.36

Γ	Inflow i	nto SA		1	_ (F_	→SA)	(1)		
	from a	job or UI		10	$Pg\left({P_{15}}\right)$	$(64,-1)_t$	1)	
		Constant	-280.1	-280.0	-263.3	-266.7	-266.7	-267.5	-266.8
			(-45.2)	(-45.3)	-40.9)	(-41.4)	-41.3)	-41.4)	-41.4)
	Matching	$I_{III}(J)$	0.199	0.256	0.191	0.155	0.161	0.167	0.172
		$\left(\frac{\overline{P_{15-64}}}{P_{15-64}}\right)_{t-1}$	(4.39)	(4.77)	(3.57)	(2.93)	(3.05)	(3.12)	(3.24)
	Efficiency	CH		-0.075	-0.107	-0.120	-0.116		
	Churning	$\left(\frac{P_{15-64,-1}}{P_{15-64,-1}}\right)_t$		(-1.99)	(-2.82)	(-3.15)	-3.08)		
	Work Rea	(WR)						-0.161	-0.156
		$\left(\frac{P_{15-64,-1}}{P_{15-64,-1}}\right)_t$						-2.84)	-2.77)
	Joh Rea	(JR)						0.018	
	0001100	$\left(\frac{P_{15-64,-1}}{P_{15-64,-1}}\right)_t$						(0.54)	
	Specific	(Inclow)			0.222	0.239	0.237	0.239	0.237
	stocks	$\left(\frac{P_{15-64}}{P_{15-64}}\right)_{t-1}$			(5.97)	(6.42)	(6.38)	(6.43)	(6.39)
		(Minor)			0.156	0.051	0.070	0.052	0.072
		$\left(\overline{P_{15-64}} \right)_{t-1}$			(6.38)	(1.69)	(2.70)	(1.75)	(2.77)
		time trend	0.137	0.137	0.130	0.131	0.131	0.132	0.131
			(11 2)	(11 26)	(10 7)	(11 10)	(11 2)	(11 2)	(11 10)

verview of the regress				
	ion results o	of the final m	odels	
Final model	OUTI	FLOW	INF	LOW
	Unem Ins	Social Ass	Unem Ins	Social Ass
Matching				
Stock UI / SA	+	+	+	+
Stock of Vacancies	+		n.a	n.a.
Effiency				
Churning			-	-
Worker reallocation			-	- /
Job reallocation				
Stocks				
Low income recipients	+		+	+
Minorities	-	(-)		+
Urban	+		+	+

